Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions
نویسندگان
چکیده
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower.
منابع مشابه
Validation of Reference Genes for Real Time PCR Normalization in Milk Somatic Cells of Holstein Dairy Cattle
Real time-qPCR is the most reliable method for evaluation of mRNA expression levels. However, to obtain accurate results, selection of suitable reference genes is necessary for normalizing the real-time qPCR data. The aim of this research was to validate the expression stability of three potential reference genes (ACTB, GAPDH and UXT) in milk somatic cells of Holstein dairy cattle under differe...
متن کاملEvaluation of New Reference Genes in Papaya for Accurate Transcript Normalization under Different Experimental Conditions
Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for...
متن کاملIdentification of Reference Genes for Quantitative Expression Analysis of MicroRNAs and mRNAs in Barley under Various Stress Conditions
For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs)would be stably expressed in different barley varieties and under different experimental treatments,in different tissues a...
متن کاملStability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions
Real-time quantitative reverse transcription PCR is a sensitive and widely used technique to quantify gene expression. To achieve a reliable result, appropriate reference genes are highly required for normalization of transcripts in different samples. In this study, 9 previously published reference genes (60S, Fbox, ELF1A, ELF1B, ACT11, TUA5, UBC4, G6PD, CYP2) of soybean [Glycine max (L.) Merr....
متن کاملIdentification, Sequencing and Stability Evaluation of Eight Reference Genes in Saffron (Crocus sativus L.)
Saffron (Crocus sativus L.) is the most valuable and expensive spice in the world. The stigmas of saffron are the source of valuable apocarotenoids such as crocin, picrocrocin and safranal. transcriptomic and expression studies of genes are important steps in investigating of secondary metabolites in plants. One of the important prerequisites for such studies is the existence of reliable and st...
متن کامل